832 research outputs found

    Nocardia farcinica lung infection in a patient with cystic fibrosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Respiratory tract infections are the major causes of morbidity and mortality in patients with cystic fibrosis. <it>Nocardia </it>are rarely implicated in these infections and few reports of the involvement of this species are found in the literature.</p> <p>Case presentation</p> <p>We describe a case of lung infection followed by chronic colonization of trimethoprim and sulfamethoxazole resistant <it>Nocardia farcinica </it>in a patient with cystic fibrosis. The chronic colonization of this uncommon bacterium in patients with cystic fibrosis was proved using a newly developed real-time polymerase chain reaction assay, which indicates that this bacterium, despite treatment, is difficult to eradicate.</p> <p>Conclusion</p> <p>Our case report confirms that this organism can be recovered in persons with cystic fibrosis. Its eradication is necessary especially if the patient is to undergo lung transplantation.</p

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation

    Get PDF
    Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas

    Is health research undertaken where the burden of disease is greatest? Observational study of geographical inequalities in recruitment to research in England 2013–2018

    Get PDF
    Background: Research is fundamental to high-quality care, but concerns have been raised about whether health research is conducted in the populations most affected by high disease prevalence. Geographical distribution of research activity is important for many reasons. Recruitment is a major barrier to research delivery, and undertaking recruitment in areas of high prevalence could be more efficient. Regional variability exists in risk factors and outcomes, so research done in healthier populations may not generalise. Much applied health research evaluates interventions, and their impact may vary by context (including geography). Finally, fairness dictates that publically funded research should be accessible to all, so that benefits of participating can be fairly distributed. We explored whether recruitment of patients to health research is aligned with disease prevalence in England. Methods: We measured disease prevalence using the Quality and Outcomes Framework in England (total long-term conditions, mental health and diabetes). We measured research activity using data from the NIHR Clinical Research Network. We presented descriptive data on geographical variation in recruitment rates. We explored associations between the recruitment rate and disease prevalence rate. We calculated the share of patient recruitment that would need to be redistributed to align recruitment with prevalence. We assessed whether associations between recruitment rate and disease prevalence varied between conditions, and over time. Results: There was significant geographical variation in recruitment rates. When areas were ranked by disease prevalence, recruitment was not aligned with prevalence, with disproportionately low recruitment in areas with higher prevalence of total long-term and mental health conditions. At the level of 15 local networks, analyses suggested that around 12% of current recruitment activity would need to be redistributed to align with disease prevalence. Overall, alignment showed little change over time, but there was variation in the trends over time in individual conditions. Conclusions: Geographical variations in recruitment do not reflect the suitability of the population for research. Indicators should be developed to assess the fit between research and need, and to allow assessment of interventions among funders, researchers and patients to encourage closer alignment between research activity and burden

    Catheter-associated bacteremia by Mycobacterium senegalense in Korea

    Get PDF
    BACKGROUND: Rapidly growing mycobacteria is recognized as one of the causative agents of catheter-related infections, especially in immunocompromised hosts. To date, however, Mycobacterium senegalense, which was known as the principal pathogen of bovine farcy, has not been reported in human infection. CASE PRESENTATION: We describe the first case of human infection by M. senegalense, which has caused catheter-related bloodstream infection in a cancer patient in Korea. The microorganism was identified by the 16S rRNA gene, rpoB, and 16S-23S rRNA gene internal transcribed spacer (ITS) sequence analyses. CONCLUSION: Our first report of catheter-associated bacteremia caused by M. senegalense suggests the zoonotic nature of this species and indicates the expansion of mycobacterial species relating to human infection. M. senegalense should be considered as one of the causes of human infections in the clinical practice

    Understanding the impact of antibiotic therapies on the respiratory tract resistome: A novel pooled-template metagenomic sequencing strategy

    Get PDF
    Determining the effects of antimicrobial therapies on airway microbiology at a population-level is essential. Such analysis allows, for example, surveillance of antibiotic-induced changes in pathogen prevalence, the emergence and spread of antibiotic resistance, and the transmission of multi-resistant organisms. However, current analytical strategies for understanding these processes are limited. Culture- and PCR-based assays for specific microbes require the a priori selection of targets, while antibiotic sensitivity testing typically provides no insight into either the molecular basis of resistance, or the carriage of resistance determinants by the wider commensal microbiota. Shotgun metagenomic sequencing provides an alternative approach that allows the microbial composition of clinical samples to be described in detail, including the prevalence of resistance genes and virulence traits. While highly informative, the application of metagenomics to large patient cohorts can be prohibitively expensive. Using sputum samples from a randomised placebo-controlled trial of erythromycin in adults with bronchiectasis, we describe a novel, cost-effective strategy for screening patient cohorts for changes in resistance gene prevalence. By combining metagenomic screening of pooled DNA extracts with validatory quantitative PCR-based analysis of candidate markers in individual samples, we identify population-level changes in the relative abundance of specific macrolide resistance genes. This approach has the potential to provide an important adjunct to current analytical strategies, particularly within the context of antimicrobial clinical trials

    Conditional Gene Expression in Mycobacterium abscessus

    Get PDF
    Mycobacterium abscessus is an emerging human pathogen responsible for lung infections, skin and soft-tissue infections and disseminated infections in immunocompromised patients. It may exist either as a smooth (S) or rough (R) morphotype, the latter being associated with increased pathogenicity in various models. Genetic tools for homologous recombination and conditional gene expression are desperately needed to allow the study of M. abscessus virulence. However, descriptions of knock-out (KO) mutants in M. abscessus are rare, with only one KO mutant from an S strain described so far. Moreover, of the three major tools developed for homologous recombination in mycobacteria, only the one based on expression of phage recombinases is working. Several conditional gene expression tools have recently been engineered for Mycobacterium tuberculosis and Mycobacterium smegmatis, but none have been tested yet in M. abscessus. Based on previous experience with genetic tools allowing homologous recombination and their failure in M. abscessus, we evaluated the potential interest of a conditional gene expression approach using a system derived from the two repressors system, TetR/PipOFF. After several steps necessary to adapt TetR/PipOFF for M. abscessus, we have shown the efficiency of this system for conditional expression of an essential mycobacterial gene, fadD32. Inhibition of fadD32 was demonstrated for both the S and R isotypes, with marginally better efficiency for the R isotype. Conditional gene expression using the dedicated TetR/PipOFF system vectors developed here is effective in S and R M. abscessus, and may constitute an interesting approach for future genetic studies in this pathogen

    Identificación molecular de micobacterias no tuberculosas mediante el análisis de los patrones de restricción, Colombia 1995-2005

    Get PDF
    Introduction. Nontuberculous mycobacteria can be saprophytic, pathogenic or opportunistic. The most common diseases produced by these microorganisms are the post-surgical infections due to anesthetic procedures, infections associated with catheters, disseminated cutaneous diseases and pulmonary and central nervous system diseases that especially affect HIV patients. Identification of the nontuberculous mycobacteria can take several weeks and even then, differentiation of complex members is not possible.Objective. The PCR-restriction analysis (PRA) technique was evaluated as a method for genotypic identification of nontuberculous mycobacteria isolated of clinical samples located in the culture collection of the Instituto Nacional de Salud (National Institute of Health), Bogotá, Colombia.Materials and methods. Seventy clinical isolates of nontuberculous mycobacteria stored in 50% glycerol at -70&deg;C were identified by phenotypic techniques. The genotypic identification was made using the PCR-restriction analysis (PRA) using the restriction enzymes BstEII and HseIII, the restriction products were visualized on gels of agarose to 3%, and the concordance between the methodologies was evaluated.Results. A matching of 100% was obtained in the identification of Mycobacterium terrae, M. szulgai, M. avium, M. chelonae and M. scrofulaceum, the matching between M. fortuitum species, M. abscessus, M. gordonae and M. intracellulare varied from 44 to 89%; there was no concurrence in the identification of species M. flavescens and M. malmoense. Conclusions. PRA provided a fast, inexpensive and accurate alternative for the identification of nontuberculous mycobacteria that permited the differentiation among species of a complex and determining the subtype of each species sample.Introducción. Las micobacterias no tuberculosas pueden ser saprofitas, patógenas u oportunistas; las enfermedades más comunes producidas por estos microorganismos son las infecciones posquirúrgicas, principalmente por procedimiento estéticos, infecciones asociadas con catéteres, enfermedades cutáneas diseminadas, enfermedades pulmonares y del sistema nervioso central que afectan especialmente a pacientes infectados con el virus de la inmunodeficiencia humana. La identificación fenotípica de las micobacterias no tuberculosas incluye pruebas microbiológicas y bioquímicas, las cuales pueden tomar varias semanas y algunas veces no logran diferenciar entre los miembros de un complejo.Objetivo. El objetivo fue evaluar la metodología de reacción en cadena de la polimerasaanálisis de restricción, como método de identificación genotípica de micobacterias no tuberculosas aisladas de muestras clínicas que pertenecen a la colección del Instituto Nacional de Salud.Materiales y métodos. Se estudiaron 70 aislamientos clínicos de micobacterias no tuberculosas, criopreservados en glicerol al 50% e identificados mediante metodologías fenotípicas. La identificación genotípica se realizó por reacción en cadena de la polimerasa-análisis de restricción y se evaluó la concordancia entre las metodologías.Resultados. Se obtuvo una concordancia del 100% en la identificación de Mycobacterium terrae, M. szulgai, M. avium, M. chelonae y M. scrofulaceum, en las especies M. fortuitum, M. abscessus M. gordonae y M. intracellulare varió de 44% a 89%; no se obtuvo concordancia en la identificación de las especies M. flavescens y M. malmoense.Conclusiones. El análisis de restricción es una alternativa para la identificación de especies de micobacterias no tuberculosas, rápida, económica y segura para la identificación, que permite la diferenciación entre especies de un complejo y la determinación del subtipo de cada especie
    corecore